3. Developing a Verifiable System

From*“ Verification, Validation, and Evaluation of Expert Systems, Volume|”

This chapter delineates how V'V & E should be incorporated into the expert system lifecycle. Although
someideas may be used for revising and/or reengineering existing systems, this chapter isaimed mainly
a designing new systems and ensuring that enough V'V & E operations are done during the lifecycle so
that these systems are verifiable. Included in this process are decisons that should be made during
system specification and verification/validation during stepwise development of an expert system.

Introduction

The proposed lifecycle for the development of expert systemsis a compilation of concepts taken from
many sources including lifecycle, cleanroom, ect. The compiled system was organized and enhanced
based on the experience of its developers to generate a basis for the development of “verifiable’
gysems. Even though the system allows for some flexibility in the degree of application of each of the
system’s components, the generd outline has to be followed rigoroudly in order to achieve the
objective outlined above.

The Concept: Figure 3.1. outlines the genera concept for the development of a verifiable system. It
includes the following stages:

Specification: Thisstep isindispensable in the VV & E process.

Stepwise Development Process: This is one of the methods for the development process, other
software development methods can be used as long as they include enough structure and verification
steps.

Design (1): Start by designing the main parts of the expert system.
Veify (1): Verify that the design complies with the specification.
Implement (1): Implement (code) the first increment.

Veify (1): Veify that the implemented code complies with the design.

Design - Verify - Implement - Verify (2 ton): Loop through the entire process for the 2nd,
3rd, ... nth level until the entire system is complete.

SPECIFICATION

Single Source Document for al || | Correctness + Completeness Stability *Problem Definition j
Structure Design & Validation *Population of Problemsthe System |
. of Requirements Implementation 3 3 is Supposed to Solve }
R R ‘ . » Définition of “Correct” Problem Solution
. » Required Level of Performance ‘
+ » Use of “Formal” Specification Methods
(box structure methodolgy)
© « Knowledge Illustration
. » User Involvement

STEP-WISE REFINEMENT DEVELOPMENT

DESIGN [l ‘
2,..nincrement - structural design Rigorous & Formal Design Based
fTo T T ! on Structured Programing Theory
A -+ Design Logic !
.« Software Structure
« Knowledge Representation
« Organization of Structural Data

NO

CORRECTNESS “\Correctness: 1
Equivalence Between -
Requirements & Design

NO

CORRECTNESS X~ I -

Executable Rules; Objects;
Procedures

'Correctness:

‘Equivalence Between
‘Design & Implementation

TESTING

Figure 3.1: Developing aVerifiable System

Specification
The godl of this stage isto develop the system’ s specification.

input: software specific customer requirements.
output: software functiona and performance requirements.

The Importance of Specifications

Specifications are important for VV&E. Asnoted in the introduction, verification determinesif a
system meets its specifications; thisis meaningless if there are no specifications. Validation determines
if asystem does what is needed; thisis only possibleif it has been decided what a system is supposed to
do. Theresults of these decisions are specifications.

At the specification stage the emphasisis on producing aclear identification of:

What isto be produced?
When to produce it?
What are the resources required?

Theissueisto find atrade-off between the requirements specification (client) and the resources (time
and money). The use of forma approaches (formal notation i.e., the Structured Anaysis[SA; De
Marco 1978], the Software Requirements Engineering Methodology [SREM; Alford 1978], the
Structured Analysis and Design Technique [SADT; atrademark of Sof Tech],) proved to be very useful
inthisprocess. Thisisespecidly important to the V&V task because of the clarification provided by
the use of these methods.

Functiona Specification (FS): Specification of functions to be performed by the system and the
congtraints within which it must work.

Acceptance Test Specification: Test definition:
Who will perform the test(s)?
When (at what point)?
How do we insure that the system behaves according to the FS ?
Include V&V Techniques to be used and when (at which time).

In addition to the above mentioned items, the following items should aso be addressed:

A clear definition of the population of problems the expert system is supposed to solve.
A provison of test and development samples.
Therequired levd of performance.
A clear definition of what congtitutes a correct problem solution verification:
Isit possible to collect inputs that could possibly solve the problem?

Isit possible to compute the proposed output from the input validation?

Can the experts certify that the specifications, if properly implemented, would solve the evauation
problem?

Can expertsjudge that the system is worth the probable cost?
Can experts judge that the system would be useful in practice?
Isit possible to build asystem that could be integrated with other components as necessary?

The General Form of Specifications

For the forma proof techniques presented in the following chapters, it is useful to have a genera
representation of a specification. Most specifications are based on the following form:

For some subset S of the input space of an expert system, and
fordl XinS,
the output of the system satisfies some proposition P.

Defining Specifications

It is particularly important to define specifications for the critical cases the expert syslem may
encounter. A critical casefor an expert system isa set or range of input data on which failure of the
expert system to perform correctly causes an unacceptable, perhaps catastrophic, failure of the system
of which the expert sysem isapart.

There are severd stepsin defining and verifying specifications for an expert system:

Gather informal requirements from experts, with particular attention to defining the critical cases.
Obtain expert certification of the specifications.
Validate informal descriptions of the specifications with experts.

Validate the trandation of informal specifications into the forma notation used in the knowledge
base.

Vdidate the forma statement of the requirements usng symbolic evauation.

Each step is detailed in a section below, with particular attention to critical cases.

Gather Informal Descriptions of Specifications

Thefirst step in verifying specificationsis to gather a complete set of requirements. Only the domain
expert(s) can providethislist. Idedly, during the origina knowledge acquisition phase for the expert
system, the knowledge engineer gathered, documented, and validated the critical cases. If the
informally stated requirements are not available, however, gathering them isthe first necessary step in
verifying the correctness of an expert system.

Typicdly, to gather the critica cases, the knowledge engineer should ask the domain expert(s) to list
critical cases, and to keep acareful record of them. Aswith most knowledge acquigition tasks, it is
important to ask for the following information:

Generd principles, e.g. "What are the critical performance requirements for this expert syssem?”

Specific projects, and the critical performance requirements found in those projects. To get this
information, the knowledge engineer should ask the expert(s) to tell him about their projects and
experiences that are within the scope of the knowledge base. The purpose of thisisthat by
reviewing the specific projects the expert's memory will be spur. This process will help the
engineer to decide what the critical casesredly are.

In gathering a set of critica cases, it isimportant to let the domain experts describe critical casesin
their own words and notation, not in the notation of the expert system. Thisis because the expert
system may have missed a critica variable that may be needed to recognize acritical case. If the
knowledge engineer asks the expert to verify knowledge base gobbledygook, the expert may become
too distracted to think of acritical case not described with the incomplete set of variables used in the
incomplete knowledge base.

Obtain Expert Certification of the Specifications

It isimportant that the knowledge engineer impel the expert(s) to certify the specifications, especialy
those concerning the critica cases. Thisisavita step in the process because the expert system will be
built to meet and tested against the specifications. If the specifications are in error, the expert system
will dmost surely fail to perform properly.

In order to obtain meaningful certification of the specifications, the knowledge engineer must make
sure that the expert focuses on a careful review of the specifications. Among the waysto obtain this
focus are:

Have a group of experts reach consensus on the specifications, with the knowledge engineer
functioning as amoderator. In thisrole, the engineer will:

Be familiar with the ongoing discusson, and in addition, will be in a postion to solicit
important issues that must be resolved.

Ensure that the experts address those issues and reach an agreement.

Have the expert(s) sign off on the specifications.
Validating Informal Descriptions of Soecifications

For systems where correct performance is critical, the next step in vaidating specifications of the
expert system isto validate the informa descriptions of critical cases. The basic method for validation
isthat of cultural consensus, described in the chapter, "Vdidating Expert Knowledge.” In this method,
experts, ideally those who have not provided the specifications, are used to validate the correctness of
those specifications.

There are two questions that should be asked concerning theinforma list of critical casesto vaidate: is
the set of critical cases complete, and are the critical cases correct? To validate completeness, the
knowledge engineer should conduct interviews with experts who have not contributed to the critica
caseligt. Thisinterview issmilar to the one used to gather the list of critical cases, with one additional
sep: at the end of the interview, ask the expert to certify not just the critical cases the expert

proposed, but the entire list of critical cases gathered so far, including those that were added during the

5

interview. After additional experts no longer provide new critical cases, the entire list gathered has
been validated to a confidence level depending on the number of experts who certify thelist. Chapter
9, "Vdidating Underlying Knowledge", discusses these confidence levelsin more detall.

Validating the Trandation of Informal Descriptions

To validate the critical cases, the informa descriptions must be trandated into forma statementsin the
language of the knowledge base. The goal of thistrandation isto produce statements of the form:

if HLand H2 ... and Hnthen C1 and C2...and Cn.

The H’s should be gtated in terms of input variables of the expert system, and the C' s should be
possible conclusions of the expert system.

The trandation into a knowledge base language is a process that can introduce errors. For example,
for Knowledge Base 1 acritical case in theinforma language of an expert might be, "If the client
doesn't have alot of money, he/she should first build a savings account.” The closest that one can
come to expressing thisin the language of Knowledge Base 1 is:

If "Discretionary income exists' = no
then investment = "bank account".

A financia planner would probably consder "Discretionary income exists' an inadequate trandation of
"the client doesn't have alot of money"; Knowledge Base 1 does not even ask about existing savings or
most other assets.

Asthis exampleillugtrates, the trandation of expert knowledge into the formal knowledge language of
an expert system is one of the tasks where errors can creep into the expert syssem. To have atruly
vaidated expert system, the trandation has to be validated. Although thisisrarely done, items can be
created for validation asfollows:

|s <expert's statement of a critical case>

equivaent to <the same criticd case in the knowledge language>
These items form the basis for a cultural consensustest for a set of knowledge engineers (see chapter 9
"Vadlidating Underlying Knowledge"). When asking knowledge engineersto validate the trandation of
critical cases, it isimportant to:

Use knowledge engineers who have not built the knowledge base.

Give the validating knowledge engineers the opportunity to familiarize themselves with the

knowledge language before examining the individud items.

In trandating the informal requirements into forma knowledge base statements, there are some typica
kinds of errors, as discussed below:

Fase negativesin the input variables. One problem in knowledge trandation results from the fact
that a symptom is often used in a knowledge base to stand for an underlying condition; in the above
example, for example, "no discretionary income” stands for "has no money.” However, few
observations are 100 percent reliable. If asingle symptom isused to test for aconditionin a
knowledge base, afase negative of that symptom will produce an error in what the expert system
does.

The solution to the false negative problem is to separate symptoms and underlying conditionsin the
knowledge base. If C isa condition, the knowledge base should contain arule of the form:

if SLor S2or .. SnthenC (Rule C).

Where Sl through Sn are a set of symptoms such that the probability of false negativesin al the S'sls
less than some agreed-on threshold. Outside of Rule C, and similar condition-inferring rules, the S's
should not appear when acondition (i.e., C) isintended. Therefore, every occurrence of an S outside
of acondition-inferring rule should be validated by expert(s).

In the case where a single symptom has such low fase negatives that it identifies C by itself below the
acceptable error threshold, it is unnecessary to separate the symptom and condition in the knowledge
base:

Missng input variables: An expert learns to observe many symptoms of possible problems. An
expert sysem may use only asmal number of variables. Whether the smal number of variablesis
adequate is a matter that experts must validate. 1t isimportant to ask experts what data they gather
inlooking at problems covered by the knowledge base. If the expert looks at more than the expert
system, for example variable X, then:

Can the expert get dong without <variable X>
is aknowledge item that should be validated (see chapter 9).
Validation of Formalized Requirements
At this point, the critical cases have been transformed into a set of statements of the form:
if HLand H2 and ... and Hn then C1 and ... Cm(name: f1).

Forma verification methods for specificationsin this form are discussed in the chapters on knowledge
modeling and verification techniques for smdl systems.

Figure 3.2 outlines the steps to be considered at the specification stage and figure 3.2.1 shows their
implementation to knowledge base 1.

Other Issues to be addressed at this stage:

Project Plan: Breakdown of the work; manpower figures, milestones, ect.
Quality Management Plan: Qudity Control.

. SPECIFICATION
T REPRTETE «Correctness + Completeness « Stability || “Problem Definition N
Single Source Document for all «Population of Problems the System is 3
Structure Design & Validation ! ! __ Supposed to Solve _ ‘
of Requirements Implementation ; e Defm_mon of “Correct” Problem Solution
,,, . » Required Level of Performance 1
-« Useof “Formal” Specification Methods (box
1 structure methodolgy) .
+ » Knowledge Illustration
+ » User Involvement
Exploratory
R cn CoSr?\e?Zte
(i.e., prototype) P

STEP-WISE REFINEMENT DEVELOPMENT

Figure 3.2: Specification

Problem Definition:
The lack of readily available investment advice.
Develop a system that will advise the user on investment Strategies.
Population of Problems the System is supposed to solve:
Investment advice to people with lessthan $ 1 Million to invest.
Definition of Correct Problem Solution:
An investment strategy is dways suggested.
Proposed solution should be affordable
Theinvestor is comfortable with the advise.
Required leved of performance:
Asgood as 70% of the expert(s) [Define: good 70% of the time or 70% as good all the time].
The system should dways recommend an affordable investment even if it has to be a conservative
one.

Note: Knowledge Acquistion & User Involvement:

Figure 3.2.1: KB1 Specification

Step-Wise Refinement Development

At this stage, amapping of the system functions (from FS) into software components will occur and
the overall System Structure (Architecture) must be defined. The use of the following Box Structure
Methodology will help in this process.

Software Sructure

The general software architecture should consist of:
Software Components (for each software component, determine its purpose, functionality,
interface, and data requirements).
Structure & Flow.

Box Sructure Methodology

Black Box: Externa view of the system. This provides a system description of the user visble
system inputs and responses. No detalls on the internal structure and operations are provided.

State Machine: Intermediate system view. This decomposes the internal state structure from the
BB description of the system.

Clear Box: Internal view of the system operations on inputs and interna state data.

If the box structure methodology, isto be used, the first level/increment should consist of the overdl
design taken as deep as possible (using black boxes for functions and sub-systems). At every

subsequent increment the design should be taken deeper, two to three level down, until dl the boxes
are replaced by their respective functions/subsystems.

Design Refinement
The Top Level Design:

Given the specifications for the system as a whole, a top level software module is desgned with the
following properties:

The dedign for the top level software is written in a language, which may be but is usudly not a
compilable programming language. Any language which has a precisely enough defined syntax and
semantics to unambiguoudy define what the design does when executed, and to carry out required
correctness proofs of the software can be used. Languages tha fit these requirements are cdled
design languages. The process of rendering axiomized software into a design language is caled
designing the software.

The software design can be trandated from its existing language into a compilable programming
language. Techniques for doing this trandation for standard knowledge models will be presented
later. The software design can be proved correct. In particular, the software can be proved to be
complete, consstent and to satisfy its specifications, under the assumption that any other functions
or other software modules used within the current object of proof satisfy some written, precise,
mathematica specifications.

Refining the Design:

Once the disggn process has been started, a modification of the familiar successive refinement lifecycle
adds detall to the design. Detall is added in two ways:

Software modules which have been axiomized but not designed can be designed.

Software that has been designed can be trandated into a language that is closer to, or is, a
compilable programming language.

Verifying the Design:

A design is verified when it has been proved that the desgned module is complete, consistent and
satisfied its specifications.
A module is complete iff for al pointsin its input space, some vaues of the outputs and behaviors
required to ingtantiate the specifications are computed.

A module is conggtent iff it is possible, both mathematicaly and under the congraints imposed by
knowledge in the area of gpplication, for al the output values and behaviors to be true at the same
time.

10

A module satisfies its specifications iff its specifications are true when ingtantiated with any input
vaues and any outputs or behaviors produced from those inputs.

Completing the Design:

A design is complete when dl software modules appearing in the design have been axiomized, designed
and verified.

From Specifications:
1. AnInvestment sirategy is always suggested:
List of possible investments strategy for KB1:
Stocks.
Saving Accounts.
Do Nothing (Although thisis a good choice for many instances, it is not considered for the example).
Note: The list of output might be incomplete at this stage (i.e., may discover other possible strategies
down theline).
Define the specifications in terms of these newly defined list of output.
2. Proposed solution should be affordable:
When is stock affordable?
When is Saving Account affordable?
| nteraction with the expert(s)
Depending on the complex nature of the questions to be answered, we may find out that other things
might be needed:
I nteraction with data bases.
Algorithmic routines.
Sub Expert systems.
For KB1.:
The expert determined that stocks are affordable if “Discretionary Income” exists.
We have to define “ Discretionary Income” in a measurable manner.
From the interaction with the expert, we introduce the concept that in order to have “DI”, the investor
hasto have:
Some savings (> $ 3000.).
A luxury item (Boat/ Luxury Car).
n.b.: 1. Keep careful records of interaction with the expert(s).
2. One of the products of these steps are expert(s) verifiable statements about the knowledge
domain.
i.e, Socksare affordableif thereis savingsand a luxury item.
These will be used for carrying out forma proof procedures. In a high risks Situation (see table 3.1)
these statements should be verified by enough experts to get the required level of confidence (see
chapter 9).
We have preliminary design information that consists of:
1. Anexpert sub-system to determine affordability.
2. Anexpert sub-system for risk tolerance.

11

3. An expert sub-system which makes an investment category decisonusing 1 & 2.

n.b.: Thisisvery useful for designing awell structured system.

Refer to chapter 7, “Knowledge Modding”, and pick a knowledge mode that fits the preliminary
design information.

Figure 3.2.2: KB1 Design

mplementation

In the implementation step, a software module is trandated from its current design language into a
compilable language. The source code resulting from that trandation must be verified, i.e. shown to be
complete, consstent and to satisfy its specifications.

Implementation isthe last step in a series of design and trandation steps that turn an initia high level
gpecification for the system as awhole into compilable code. The stepwise refinement process that
produces the code from the initia specification uses the following refinement operations:

Design of amodule that has been specified but not yet designed.
Specification of amodule that is used in a designed module but has not yet been specified.

Trandation of amodule from one design language to another language, usudly one that is more
detailed and closer to acompilable language.

At the Implementation stage, the main objective is the creation of a complete executable system,
including software to carry out al processes specified in clear or black boxes, according to constraints
on those parts of the system. The system is comprised of executable rules, objects, procedures, etc.,
that:

Satisfy requirements of the system asawhole.

Are executable functions that are equivaent to abstract functions specified in the design.
For example, the desgn may specify a function that determines that the user is rich. The
implementation may check the bank account, kind of car owned, etc. However, it may not catch
certain rich people because it does not check art owned. In this case, the implementation failsto carry
out the abstract function required of it. In genera, the computer bases a conclusion on less observed

data than an expert, and smplifies the inference an expert makes to one that is just based on the smdll
set of data the computer looks &t.

The implementation stage should consst of the following steps:
1. Determinethe high leve structure of the system to be implemented.
2. Define communication between subsystems Implementation.

3. Provide adetaled definition of subsystems.

12

4. Sdect theimplementation tool.

5. Execute the implementation in the tool.

Constraints on Design and Implementation
The following constraints apply to the operations in the stepwise refinement process:

Specification of a module must include al properties that are used in any existing verifications of other
modules.

No module can be designed before it is specified.
Designs must be proved to satisfy their specifications.

Trandations must preserve specified properties of the source module (being trandated) in the
destination module (the result of the trandation).

Correctness Verification

Design vs. Specification

The overdl result of thisisaproof that any system that satisfies all the design documentsis correct
(i.e, complete, consstent, stable, satisfies requirements imposed by subject) provided that the parts not
yet designed or implemented have properties as required by clear box theorems and the models of
knowledge, or specified by the expert.

Codevs. Design

The equivaence between requirements and implementation must be proven. Previous results together
with proof of equivaence of design and implementation may be used. This may take the form of a
cleanroom-type layered correctness proof in which al boxes are clear and implemented, with the top
part congtituting the previous proof of the equivaence of requirements and design.

Depending on the complexity of the problem and the consequence of failure, this processisto be
accomplished by the developer(s) (Leve 1), the developer(s) and two members of the organization
(Leve 1), or aseparate verification team (leve 111). Table 3.1 isto be used asaguidein determining
the leve of the project. figure 4.3 showsthe process and figure 3.3.1 is the implementation to
knowledge base 1.

Table3.1: Levd of Effort for the Correctness Verification Stage

13

OUTPUT:
Detailed CR Report

- Correct Verificati

Team

YES CORRECTNESS

VERIFICATION
(Team Reviews)

. Correctness;

Equivalence Between
Design & Implementation

Conseguence of Fallure

Complexity | Lossof Injury High $$$ Inconvenience | Other(IC,...)
Life

Vey Il Il Il]

Complex

Medium Il Il] I I

Simple Il Il] I I

77777777777 > DESIGN

Rigorous & Formal Design Based
on Structured Programing Theory

structural design

ons

' Done By: <
‘Level I: Developers :
‘Level Il: Developer(s) + 2
‘ Members of :
! Organization
‘Level Ill: Separate V&V

« Design Logic

« Software Structure

« Knowledge Representation

« Organization of Structural Data

CORRECTNESS Correctness:

VERIFICATION
(Team Reviews)

Equivalence Between
Requirements & Design

IMPLEMENTATION || Executable Rules; Objects; Procedures

« Determine High Level Structure
Define Communication

Define Subsystems

Select Implementation Tool
Implement

Figure 3.3: Correctness Verification

Step 1 -- Determine the high level structure of the system to be implemented: From the design
stage, it was determined that the expert system condsts of 3 subsystems, discretionary income (D),

14

risk tolerance (RT) and type of investment (INV). The structure of the system can be expressed by the
function:

Investment = INV(DI(boat, "luxury car", "savings account"),
RT(stocks, "lottery tickets"))
This expresses the fact that the output of DI and RT are inputsto INV.

Step 2 -- Define communication between subsyssems The output of DI and RT must be
aufficiently fine-grained to distinguish cases where different investments are indicated. Since there are
only 2 investments in this example system, only 2 values are required as output for each of these
subsystems; use high and low for risk tolerance, and yes and no for discretionary income. At this point,
the inputs, outputs and communication between subsystems have al been defined.

Step 3 -- Detailed definition of subsystems In this stage, the expert information collected in the
design step will be converted into precise logica statements; this process will be illustrated on the DI
subsystem.

The condition that must be true to have discretionary incomeiis.
A = (Savings > $3000) (1)
AND ("Own Boat" =yes OR "Own Ca" = yes)
The expert information about discretionary income can be formaized as.
A IMPLIES ("discretionary income' =yes) (2)
NOT A IMPLIES ("discretionary income” = yes) 3

Step 4 -- Sdlection of implementation tool: At this point, there is enough information to choose a
tool in which to implement the expert syslem. The requirements on the tool are:

Provide for communication between subsystems.
Expressrules such as (2) and (3).

Most rule-based expert system shells meet these requirements. Although the order of information in
the knowledge base must be dightly different in forward and backward chaining implementations,
ether form of inference engine can be used to implement this knowledge base.

Step 5 -- Implementation in the tool: The rule-based-shell implementation will be written in two
geps. firgt as a generic rule-based implementation, findly as an implementationin CLIPS.

15

Step 5.1 -- A generic rule-based implementation: Rule-based shells typicdly dlow meny, fill-in and

yes-no questions. The following questions will gather the necessary information for discretionary
income:

QUESTION TEXT TYPE
What is your savings balance? fill-in

Do you own aboat yes-no
Do you own aluxury car yes-no

The inputs and outputs can be represented ingde the expert system by the following variables:

VARIABLE TYPE VALUE
savings numerica >=0

"Do you own a boat" boolean yesor no
"Do you own aluxury car" boolean yesor no
"discretionary income" enumerated values high or low

Now put the knowledge in statements (2) and (3) into the rule form of rule-based shells. Rule based
shells encode information in the following form:

* Rules are of the form:
|F <conditions> then <inferences> and <actions>
» <conditions> are built from smple requirements with the logical operations AND, OR and NOT.

* Many of the smple requirements can be written in the forms such as VARIABLE = VALUE, or
more generaly:

VARIABLE REL VALUE, where REL isone of the relations
= > < >=. <=

* |nferences can aso be written in the form:

16

VARIABLE =VALUE, i.e VARIABLE isset equal to VALUE.
Actions are dependent on particular shells, and will be deferred at thistime.
Using the above notation, (2) can be written as:
IF (Savings> $3000) (4)
AND ("Doyouown aboat" =yes
OR "Do you own aluxury car" = yes)
THEN "Discretionary income' = yes
(3) can be put into ruleform as:
If NOT <if part of (4) THEN "Discretionary income' = no 5)

Alternatively and more usudly, arule implementing (3) iswritten in aform in which the NOT is gpplied
individualy to the smple requirements contained in the "IF' part, rather than to a complicated
expression built up from requirements. DeMorgan's Laws in mathematica logic:

NOT (A ORB) =NOT A AND NOT B (6)
NOT (A AND B) =NOT A ORNOT B
Using (6) repeatedly transforms (5) to:
IF (NOT Savings > $3000) (7
OR
(NOT "Do you own aboat" = yes
AND NOT "Do you own aluxury car" = yes)
THEN "Discretionary income" = no
Simplifying the smple conditions using the following relations,
(NOT Savings > $3000) = (Savings <= $3000) (8)
(NOT "Do you own aboat" = yes)
= ("Do you own aboat" = no)

(NOT "Do you own aluxury car" = yes)

17

= ("Do you own aluxury car" = no)
Substituting (8) into (7) gives:
IF (Savings <= $3000) (9)
OR ("Do you own aboat" =no
AND "Do you own aluxury car" =no)
THEN "Discretionary income" = no

Figure 5.1 shows an expet system in a generic rule-based shel language that implements the
discretionary income, risk tolerance and investment subsystems. The result is a smal knowledge base
(caled Knowledge Base 1) that implements the investment expert system. [Note: Knowledge Base 1
leaves out the savings requirement, to further smplify the example when it is used to illugtrate
verification and validation.]

Step 5.2 -- Implementation in CLIPS

Once a generic knowledge base has been written, it must be trandated into the language of a particular
shdl. Shown beow is an implementation of the generic knowledge base in CLIPS. The CLIPS is
farly closeto the generic rule-based KB. The main differences are:

rule syntax: Rulesin CLIPS have the following syntax:
(defrule<RULE NAME> <COMMENT>

<LIST OF CONDITIONS>

=

<LIST OF ACTIONS AND INFERENCES>
)

implementation of the AND operation: The AND operation can be implemented in two ways.

A ligt of the conjunctsin the AND.
An explicit AND operation.

These dternative ways of writing AND areillustrated by the following two equivaent rules:
(defrulerulel "stock"

(risk_tolerance high)

(discretionary_income TRUE)

=

(assart (investment stocks))

(printout t "We recommend stocks." crlf)
)

(defrulerulel "stock"

(and (risk_tolerance high) (discretionary_income TRUE))
=

(assart (investment stocks))

(printout t "We recommend stocks." crlf)

18

)

implementation of the OR operation: The OR operation can be implemented by an explicit OR
operation, i.e.,

(defrule rule3c "high risk tolerance’

(or (now_own_stocks TRUE)(lottery_tickets TRUE))

=>

(assert(risk_tolerance high))

)

Equivdently, one can write a separate rule for each digunct in the OR:
(defrulerule3cl "high risk tolerance 1"

(now_own_stocks TRUE)

=>

(assert(risk_tolerance high))

)
(defrule rule3c2 "high risk tolerance 2"

(lottery_tickets TRUE)

=>

(assert(risk_tolerance high))

)

Hereisan actud CLIPS implementation. Thisimplementation is afairly straightforward trandation of
the generic KB1. More sophisticated implementations of KB1 would structure the knowledge base so
that when sufficient information for a concluson had occurred, the user would be spared extra
questions.

; KB1in CLIPS, ademo rule based system

; Note: In the following knowledge base,
: we will use certain user interface functions
: which can be defined in CLIPS:

; YES-0r-no-p asks ayes-no question
; ask-parm asks afill-in question
; ask-parm asks amenu question

; To run this CLIPS knowledge base, you need these functions
; which are not shown here.

; INVESTMENT TY PE SUBSY STEM

Rule 1: If "Risk tolerance” = high
AND "Discretionary income exists' = yes
then investment = stocks.

(defrulerulel “stock"
(risk_tolerance high)
(discretionary_income TRUE)

19

__|
=>
(assert (investment stocks))
(printout t "We recommend stocks." crlf)

)

Rule 2: If "Risk tolerance” = low
OR "Discretionary income exists' = no
then investment = savings account.

(defrule rule2a "savings account 1"

(risk_tolerance low)

=>

(8ssert (investment "savings account™))

(printout t "We recommend a savings account.” crlf))

(defrule rule2b "savings account 2"
(discretionary_income FAL SE)

=>

(8ssert (investment "savings account™))

(printout t "We recommend a savings account.” crlf))

; DISCRETIONARY INCOME SUBSY STEM

Rule5: If
(Savings > $3000)
AND ("Do you own aboat" = yes
OR "Do you own aluxury car" = yes)
then "Discretionary income exists' = yes.

; First we will gather the information

(defrule rulesa "boat”

(not (has_boat ?))

=>

(bind 7boat (yes-or-no-p "Do you own aboat?"))
(assert (has_boat ?boat))

)

(defrule rulesb “luxury car”

(not (has_lux_car ?))

=>

(bind Ac (yes-or-no-p "Do you own aluxury car?"))
(assert (has_lux_car Ac))

)

'(defrule rulebc "savings baance'

(not (savings_baance ?))

=>

(bind 25 (ask-parm "What is your savings balance?"))
(assert (savings_balance 29b))

)

; Now we will use the information determining discretionary income

20

(defrule rulebd "has discretionary income'”
(savings_baance 7b)
(test(> 75b 3000))
(or (has_lux_car TRUE) (has_boat TRUE))
=>
(assert (discretionary_income TRUE))
)
Rule 6: If Savings <= $3000
OR
("Do you own aboat" = no
AND "Do you own aluxury car" = no)
then "Discretionary income exists' = no.

(defrule rule6 "has no discretionary income'”
(savings_baance 7b)

(test(<= 2b 3000))

(and (has_lux_car FALSE) (has_boat FALSE))
=>

(assert (discretionary_income FAL SE))

)

; RISK TOLERANCE SUBSY STEM

Rule 3: If "Do you buy lottery tickets' = yes
OR "Do you currently own stocks' = yes
then "Risk tolerance” = high.

(defrule rule3a "lottery tickets”

(not (lottery_tickets ?))

=>

(bind 2Lt (yes-or-no-p "Do you purchase lottery tickets ?"))
(st (lottery_tickets 2Lt))

)

(defrulerule3b "currently own stocks"

(not (now_own_stocks ?))

=>

(bind ?s (yes-or-no-p "Do you currently own stocks ?™))
(assert (now_own_stocks 25))

)

(defrulerule3c "high risk tolerance”
(or (now_own_stocks TRUE)(lottery_tickets TRUE))
=>
(assert(risk_tolerance high))
)
Rule4: If "Do you buy lottery tickets' = no
AND "Do you currently own stocks' = no
then "Risk tolerance" = low.

21

(defrulerule4 "low risk tolerance”

(and (now_own_stocks FAL SE)(lottery _tickets FALSE))
=>

(essert(risk_tolerance low))

)

Figure 3.3.1: KB1 Implementation

22

